[1] Wang X, Yang H, Zhou W, Liu J, Xu N.2019. Deletion of cg1360 affects ATP synthase function and enhances the production of L-valine in Corynebacterium glutamicum. J Microbiol Biotechnol. Jul 30. doi: 10.4014/jmb.1904.04019.
[2] Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han GQ, Jiang HF*, Liu J*, Ma YH.2019. High-level o-acetylhomoserine production in Escherichia coli through protein and metabolic engineering. ACS Synthetic Biology, 8(5):1153-1167.
[3] Xu N, Wei L, Liu J*. 2019. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol, 35: 33. (Invited review)
[4] Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X.2019. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. Microb Cell Fact. 18(1):15. doi: 10.1186/s12934-019-1067-3.
[5] Xu N#, Lv HF#, Wei L, Ju JS, Liu J*, Ma YH. 2019. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotech, doi: 10.1007/s00253-018-09585-y.
[6] Wei L#, Wang H#, Xu N, Zhou W, Ju JS*, Liu J*, Ma YH. 2019. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotech, doi: 10.1007/s00253-018-9547-7.
[7] Xu N, Zheng YY, Wang XC, Krulwich TA, Ma YH, Liu J*. 2018. The lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in Na+-resistance and pH homeostasis in Corynebacterium glutamicum. Appl Environ Microbiol, 84: e00110-18.
[8] Vaish M, Price-Whelan A, Reyes-Robles T, Liu J, Jereen A, Christie S, Alonzo F 3rd, Benson MA, Torres VJ, Krulwich TA.2018. Roles of Staphylococcus aureus Mnh1 and Mnh2 Antiporters in Salt Tolerance, Alkali Tolerance, and Pathogenesis. J Bacteriol.200(5). pii: e00611-17. doi: 10.1128/JB.00611-17.
[9] Wei L#, Xu N#, Cheng HJ, Wang YR, Han GQ, Ma YH, Liu J*. 2018. Promoter library-based module-combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl Microbiol Biotech, 102: 4117-30.
[10] Xu N, Wei L, Liu J*. 2017. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol, 33: 64. (Invited review)
[11] Liu QD, Ma XQ, Cheng HJ, Xu N, Liu J*, Ma YH. 2017. Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce alpha-ketoglutaric acid by whole-cell biocatalyst. Biotechnol Lett, 39 (6):913-9.
[12] Xu N, Wang L, Cheng Hj, Liu Qd, Liu J*, Ma YH. 2016. In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum. FEMS Microbiol Lett, 363: fnv237.
[13] Liu QD, Cheng H, Ma X, Xu N,Liu J*, Ma YH 2016. Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium. Biotechnol Lett, 38(7): 1107-13.
[14] Preiss L, Langer JD, Hicks DB, Liu J, Yildiz O, Krulwich TA, Meier T. 2014. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus?OF4 is adapted to alkaliphilic lifestyle. Mol Microbiol. 92(5):973-84.
[15] Liu J, Ryabichko S, Bogdanov M, Fackelmayer OJ, Dowhan W, Krulwich TA. 2014. Cardiolipin is dispensable for oxidative phosphorylation and non-fermentative growth of alkaliphilic Bacillus pseudofirmus OF4. J Biol Chem. 289(5):2960-71.
[16] Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz ?, Krulwich TA, Meier T. 2013. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc. Natl. Acad. Sci. USA. 110(19):7874-9.
[17] Liu J, Hicks DB, Krulwich TA. 2013. Roles of AtpI and two YidC-type proteins from alkaliphilc Bacillus pseudofirmus OF4 in ATP synthase assembly and non-fermentative growth. J. Bacteriol. 195(2): 220-30.
[18] Janto B, Ahmed A, Ito M, Liu J et al. 2011. The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environmental Microbiology. 13(12): 3289-3309.
[19] Liu J, Fackelmayer OJ, Hicks DB, Preiss L, Meier T, Sobie EA, Krulwich TA. 2011. Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in the c-ring stability and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry. 50(24):5497-5506.
[20] Fujisawa M, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB. 2010. The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile- specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. J. Biol. Chem. 15; 285(42):32105-15.
[21] Hicks DB, Liu J, Fujisawa M, Krulwich TA. 2010. F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim. Biophys. Acta. 1797(8):1362-1377.
[22] Guo Y, Xue Y, Liu J, Wang Q, Ma Y. 2009. Characterization and function analysis of a Halo-alkaline-adaptable Trk K+ uptake system in Alkalimonas amylolytica strain N10. Sci China C Life Sci. 52(10):949-57.
[23] Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J. Biol. Chem. 284(13):8714-25.
[24] Liu J, Krulwich TA, Hicks DB. 2008. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4. Biochim. Biophys. Acta. 1777(5):453-61.
[25] Wei Y, Liu J, Ma Y, Krulwich TA. 2007. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology. 153:2168-2179.
[26] Yuan S, Ren P, Liu J, Xue Y, Ma Y, Zhou P. 2007. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xin-Jiang, China. Int. J. Syst. Evol. Microbiol. 57(3):485-488.
[27] Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y. 2006. Gene cloning and characterization of a novel α-amylase from alkaliphilic Alkalimonas amylolytica. Biotechnol. J. 1(11):1258-65.
[28] Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB, Ito M, Ma Y, Krulwich TA. 2005. The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J. Bacteriol. 187(22):7589-95.
Book Chapter
[29] Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB, 2010. Adaptive mechanisms of extreme alkaliphiles. In: Extremophiles Handbook. Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds), Springer, Heidelberg,PP. 120-139.