President's mail  |   Contact  |   CAS  |   中文  |   Sitemap     
  Location: Home >> TIB PI

LIU Jun, Ph.D. 

Investigator, TIB, Tianjin, China 






2002-2006   Ph.D., Microbiology, Institute of Microbiology, Chinese Academy of Sciences,    Beijing, China.

1999-2002   M.S., Biochemistry and Molecular Biology, Nankai University, Tianjin, China

1994-1998   B.S., Microbiology, Nankai University, Tianjin, China

Professional Experience  

2014-Present   Investigator, TIB, Tianjin, China

2010-2013       Assistant Professor (Research track), Mount Sinai School of Medicine,

                        New York, NY, USA

2006-2010       Postdoctoral fellow, Mount Sinai School of Medicine, New York, NY

Research Interest 

Our group is interested in understanding the physiological adaptive mechanisms of industrial microorganisms to environmental stresses from the molecular level, and establishing efficient microbial cell factories for the production of amino acids, organic acids and higher alcohols using synthetic biology and metabolic engineering approach. The research areas include two aspects as follows:  1.Systematic analysis of the physiological tolerance mechanisms of Corynebacterium glutamicum to environmental stresses, such as high salt, high temperature, and low pH. 2. Investigation of the synthesis and regulation mechanisms of amino acids/organic acids/higher alcohols and construction of industrial strains by metabolic engineering.
Selected Publications  

[1] Wang X, Yang H, Zhou W, Liu J, Xu N.2019. Deletion of cg1360 affects ATP synthase function and enhances the production of L-valine in Corynebacterium glutamicum. J Microbiol Biotechnol. Jul 30. doi: 10.4014/jmb.1904.04019.

[2] Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han GQ, Jiang HF*, Liu J*, Ma YH.2019. High-level o-acetylhomoserine production in Escherichia coli through protein and metabolic engineering. ACS Synthetic Biology, 8(5):1153-1167.

[3] Xu N, Wei L, Liu J*. 2019. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol, 35: 33. (Invited review)

[4] Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X.2019. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. Microb Cell Fact. 18(1):15. doi: 10.1186/s12934-019-1067-3.

[5] Xu N#, Lv HF#, Wei L, Ju JS, Liu J*, Ma YH. 2019. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotech, doi: 10.1007/s00253-018-09585-y.

[6] Wei L#, Wang H#, Xu N, Zhou W, Ju JS*, Liu J*, Ma YH. 2019. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotech, doi: 10.1007/s00253-018-9547-7.

[7] Xu N, Zheng YY, Wang XC, Krulwich TA, Ma YH, Liu J*. 2018. The lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in Na+-resistance and pH homeostasis in Corynebacterium glutamicum. Appl Environ Microbiol, 84: e00110-18.

[8] Vaish M, Price-Whelan A, Reyes-Robles T, Liu J, Jereen A, Christie S, Alonzo F 3rd, Benson MA, Torres VJ, Krulwich TA.2018. Roles of Staphylococcus aureus Mnh1 and Mnh2 Antiporters in Salt Tolerance, Alkali Tolerance, and Pathogenesis. J Bacteriol.200(5). pii: e00611-17. doi: 10.1128/JB.00611-17.

[9] Wei L#, Xu N#, Cheng HJ, Wang YR, Han GQ, Ma YH, Liu J*. 2018. Promoter library-based module-combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl Microbiol Biotech, 102: 4117-30.

[10] Xu N, Wei L, Liu J*. 2017. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol, 33: 64. (Invited review)

[11] Liu QD, Ma XQ, Cheng HJ, Xu N, Liu J*, Ma YH. 2017. Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce alpha-ketoglutaric acid by whole-cell biocatalyst. Biotechnol Lett, 39 (6):913-9.

[12] Xu N, Wang L, Cheng Hj, Liu Qd, Liu J*, Ma YH. 2016. In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum. FEMS Microbiol Lett, 363: fnv237.

[13] Liu QD, Cheng H, Ma X, Xu NLiu J*, Ma YH 2016. Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium. Biotechnol Lett, 38(7): 1107-13.

[14] Preiss L, Langer JD, Hicks DB, Liu J, Yildiz O, Krulwich TA, Meier T. 2014. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus?OF4 is adapted to alkaliphilic lifestyle. Mol Microbiol. 92(5):973-84.

[15] Liu J, Ryabichko S, Bogdanov M, Fackelmayer OJ, Dowhan W, Krulwich TA. 2014. Cardiolipin is dispensable for oxidative phosphorylation and non-fermentative growth of alkaliphilic Bacillus pseudofirmus OF4. J Biol Chem. 289(5):2960-71.

[16] Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz ?, Krulwich TA, Meier T. 2013. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc. Natl. Acad. Sci. USA. 110(19):7874-9.

[17] Liu J, Hicks DB, Krulwich TA. 2013. Roles of AtpI and two YidC-type proteins from alkaliphilc Bacillus pseudofirmus OF4 in ATP synthase assembly and non-fermentative growth. J. Bacteriol. 195(2): 220-30.

[18] Janto B, Ahmed A, Ito M, Liu J et al. 2011. The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environmental Microbiology. 13(12): 3289-3309.

[19] Liu J, Fackelmayer OJ, Hicks DB, Preiss L, Meier T, Sobie EA, Krulwich TA. 2011. Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in the c-ring stability and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry. 50(24):5497-5506.

[20] Fujisawa M, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB. 2010. The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile- specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. J. Biol. Chem. 15; 285(42):32105-15.

[21] Hicks DB, Liu J, Fujisawa M, Krulwich TA. 2010. F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim. Biophys. Acta. 1797(8):1362-1377. 

[22] Guo Y, Xue Y, Liu J, Wang Q, Ma Y. 2009. Characterization and function analysis of a Halo-alkaline-adaptable Trk K+ uptake system in Alkalimonas amylolytica strain N10. Sci China C Life Sci. 52(10):949-57.

[23] Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J. Biol. Chem. 284(13):8714-25.

[24] Liu J, Krulwich TA, Hicks DB. 2008. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4. Biochim. Biophys. Acta. 1777(5):453-61. 

[25] Wei Y, Liu J, Ma Y, Krulwich TA. 2007. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology. 153:2168-2179. 

[26] Yuan S, Ren P, Liu J, Xue Y, Ma Y, Zhou P. 2007. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xin-Jiang, China. Int. J. Syst. Evol. Microbiol.  57(3):485-488.   

[27] Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y. 2006. Gene cloning and characterization of a novel α-amylase from alkaliphilic Alkalimonas amylolytica. Biotechnol. J. 1(11):1258-65.

[28] Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB, Ito M, Ma Y, Krulwich TA. 2005. The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J. Bacteriol. 187(22):7589-95.

Book Chapter

[29] Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB, 2010. Adaptive mechanisms of extreme alkaliphiles. In: Extremophiles Handbook. Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds), Springer, Heidelberg,PP. 120-139.

32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
Tel: 022-84861997/84861977 Fax: 022-84861926 E-mail: tib_zh(AT)
Copyright @2013, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences