President's mail  |   Contact  |   CAS  |   中文  |   Sitemap     
  Location: Home >> TIB PI
Ma Hongwu

MA Hongwu, Ph.D.

Investigator, TIB, Tianjin, China

Tel: 022-24828735

Fax: 022-24828735

E-mail: ma_hw(AT)



1997 - 2001: Ph.D, School of Chemical Engineering & Technology, Tianjin University. 

2001 - 2005: Postdoc, GBF: German Research Centre for Biotechnology.

Professional Experience

2005 –2011: Senior research fellow, School of Informatics, the University of Edinburgh.

2011 – :     Professor, Tianjin Institute of Industrial Biotechnology, CAS

Main Projects

1. National Key Research and Development Program of Chinahigh version chassis for model organisms2019-2023

2. International Partnership Program  of  Chinese Academy of SciencesArtificial cell factories for natural product synthesis. 2018-2022

3. Key Research Program of the Chinese Academy of SciencesArtificial pathways for CO2 utilization 2016-2018

4. National Key Basic Research Program of ChinaConstruction of novel pathways for biomaterial synthesis using synthetic biology methods, 2012-2016

5. Key Projects in the Tianjin Science & Technology Pillar ProgramBiosynthetic pathway design by combining data and models 2014-2017 

Research Interest

1. Pathway design based on metabolic network analysis: finding optimal pathways for converting a substrate to useful bioproducts; designing metabolic Engineering strategies to redirect the metabolic flux toward the optimal pathways.

2. kinetic models of biosystems: building kinetic models based on experimental measurement or literature data, model simulation and control analysis.

3. Whole cell models for model organisms that integrate enzyme kinetics, regulatory information and thermodynamics information with stoichiometric network models.  

4. Web/cloud based tools and software for computational analysis of biosystems. 

Selected Publications

1.    Yang, X.; Yuan, Q.; Luo, H.; Li, F.; Mao, Y.; Zhao, X.; Du, J.; Li, P.; Ju, X.; Zheng, Y.; Chen, Y.; Liu, Y.; Jiang, H.; Yao, Y.; Ma, H.; Ma, Y., Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metabolic engineering 2019.

2.     Wang, Y.; Liu, Y.; Li, J.; Yang, Y.; Ni, X.; Cheng, H.; Huang, T.; Guo, Y.; Ma, H.; Zheng, P.; Wang, M.; Sun, J.; Ma, Y., Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnology and bioengineering 2019.

3.     Lu, X.; Liu, Y.; Yang, Y.; Wang, S.; Wang, Q.; Wang, X.; Yan, Z.; Cheng, J.; Liu, C.; Yang, X.; Luo, H.; Yang, S.; Gou, J.; Ye, L.; Lu, L.; Zhang, Z.; Guo, Y.; Nie, Y.; Lin, J.; Li, S.; Tian, C.; Cai, T.; Zhuo, B.; Ma, H.; Wang, W.; Ma, Y.; Liu, Y.; Li, Y.; Jiang, H., Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature communications 2019, 10 (1), 1378.

4.     Liu, D.; Sun, H.; Ma, H., Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists Against Pathogenic Ilyonectria. Frontiers in microbiology 2019, 10, 1350.

5.     Cui, Z., Zhao, Y. , Mao, Y. , Shi, T. , Lu, L. , Ma, H. , Wang, Z. and Chen, T. , In vitro biosynthesis of optically pure d(?)acetoin from meso2,3butanediol using 2,3butanediol dehydrogenase and NADH oxidase. J. Chem. Technol. Biotechnol. 2019, 94, 8.

6.     Zheng, Y.; Yuan, Q.; Luo, H.; Yang, X.; Ma, H., Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. Bioengineered 2018, 9 (1), 209-213.

7.     Zhang, S.; Liu, D.; Mao, Z.; Mao, Y.; Ma, H.; Chen, T.; Zhao, X.; Wang, Z., Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnology letters 2018, 40 (5), 819-827.

8.     Liu, D.; Mao, Z.; Guo, J.; Wei, L.; Ma, H.; Tang, Y.; Chen, T.; Wang, Z.; Zhao, X., Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS synthetic biology 2018, 7 (7), 1785-1797.

9.     Li, F.; Xie, W.; Yuan, Q.; Luo, H.; Li, P.; Chen, T.; Zhao, X.; Wang, Z.; Ma, H., Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express 2018, 8 (1), 106.

10.   Zheng, Y.; Yuan, Q.; Yang, X.; Ma, H., Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme and microbial technology 2017, 106, 60-66.

11.   Yuan, Q.; Huang, T.; Li, P.; Hao, T.; Li, F.; Ma, H.; Wang, Z.; Zhao, X.; Chen, T.; Goryanin, I., Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PloS one 2017, 12 (1), e0169437.

12.   Zhou, W.; You, C.; Ma, H.; Ma, Y.; Zhang, Y. H., One-Pot Biosynthesis of High-Concentration alpha-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes. Journal of agricultural and food chemistry 2016, 64 (8), 1777-83.

13.   Yang, X.; Yuan, Q.; Zheng, Y.; Ma, H.; Chen, T.; Zhao, X., An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnology letters 2016, 38 (8), 1359-65.

14.   Meng, Q.; Zhang, Y.; Ju, X.; Ma, C.; Ma, H.; Chen, J.; Zheng, P.; Sun, J.; Zhu, J.; Ma, Y.; Zhao, X.; Chen, T., Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of biotechnology 2016, 226, 8-13.

15.   Li, P.; Ma, H.; Zhao, X.; Chen, T., [Predicting genetic modification targets based on metabolic network analysis--a review]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2016, 32 (1), 1-13.

16.   Fu, J.; Huo, G.; Feng, L.; Mao, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for biofuels 2016, 9, 90.

17.   Zhang, Y.; Meng, Q.; Ma, H.; Liu, Y.; Cao, G.; Zhang, X.; Zheng, P.; Sun, J.; Zhang, D.; Jiang, W.; Ma, Y., Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microbial cell factories 2015, 14, 86.

18.   Lin, Z.; Zhang, Y.; Yuan, Q.; Liu, Q.; Li, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microbial cell factories 2015, 14, 185.

19.   Kiseleva, L.; Garushyants, S. K.; Ma, H.; Simpson, D. J.; Fedorovich, V.; Cohen, M. F.; Goryanin, I., Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters. Journal of integrative bioinformatics 2015, 12 (3), 273.

20.   Zhang, Y.; Lin, Z.; Liu, Q.; Li, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microbial cell factories 2014, 13, 172.

21.   Yang, X.; Zhang, Y.; Zheng, Y.; Ma, H., [Development and analysis of a kinetic model for Escherichia coli threonine biosynthesis]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2014, 30 (1), 18-29.

22.   Tang, B.; Hao, T.; Yuan, Q.; Chen, T.; Ma, H., [Genome minimization method based on metabolic network analysis and its application to Escherichia coli]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2013, 29 (8), 1173-84.

23.   Sharp, G. C.; Ma, H.; Saunders, P. T.; Norman, J. E., A computational model of lipopolysaccharide-induced nuclear factor kappa B activation: a key signalling pathway in infection-induced preterm labour. PloS one 2013, 8 (7), e70180.

24.   Liu, Z.; Ma, H.; Goryanin, I., A semi-automated genome annotation comparison and integration scheme. BMC bioinformatics 2013, 14, 172.

25.   Hao, T.; Han, B.; Ma, H.; Fu, J.; Wang, H.; Wang, Z.; Tang, B.; Chen, T.; Zhao, X., In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Molecular bioSystems 2013, 9 (8), 2034-44.

26.   Hao, T.; Ma, H.; Zhao, X., [Progress in automatic reconstruction and analysis tools of genome-scale metabolic network]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2012, 28 (6), 661-70.

27.   Boogerd, F. C.; Ma, H.; Bruggeman, F. J.; van Heeswijk, W. C.; Garcia-Contreras, R.; Molenaar, D.; Krab, K.; Westerhoff, H. V., AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4(+)/NH3. FEBS letters 2011, 585 (1), 23-8.

28.   Wang, H.; Ma, H.; Zhao, X., [Progress in genome-scale metabolic network: a review]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2010, 26 (10), 1340-8.

29.   Ma, H.; Boogerd, F. C.; Goryanin, I., Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. Journal of biotechnology 2009, 144 (3), 175-83.

30.   Ma, H.; Goryanin, I., Human metabolic network reconstruction and its impact on drug discovery and development. Drug discovery today 2008, 13 (9-10), 402-8.

31.   Wang, Q.; Yang, Y.; Ma, H.; Zhao, X., Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics (Oxford, England) 2007, 23 (9), 1049-52.

32.   Ma, H.; Sorokin, A.; Mazein, A.; Selkov, A.; Selkov, E.; Demin, O.; Goryanin, I., The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular systems biology 2007, 3, 135.

32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
Tel: 022-84861997/84861977 Fax: 022-84861926 E-mail: tib_zh(AT)
Copyright @2013, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences