1. Yang, X.; Yuan, Q.; Luo, H.; Li, F.; Mao, Y.; Zhao, X.; Du, J.; Li, P.; Ju, X.; Zheng, Y.; Chen, Y.; Liu, Y.; Jiang, H.; Yao, Y.; Ma, H.; Ma, Y., Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metabolic engineering 2019.
2. Wang, Y.; Liu, Y.; Li, J.; Yang, Y.; Ni, X.; Cheng, H.; Huang, T.; Guo, Y.; Ma, H.; Zheng, P.; Wang, M.; Sun, J.; Ma, Y., Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnology and bioengineering 2019.
3. Lu, X.; Liu, Y.; Yang, Y.; Wang, S.; Wang, Q.; Wang, X.; Yan, Z.; Cheng, J.; Liu, C.; Yang, X.; Luo, H.; Yang, S.; Gou, J.; Ye, L.; Lu, L.; Zhang, Z.; Guo, Y.; Nie, Y.; Lin, J.; Li, S.; Tian, C.; Cai, T.; Zhuo, B.; Ma, H.; Wang, W.; Ma, Y.; Liu, Y.; Li, Y.; Jiang, H., Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature communications 2019, 10 (1), 1378.
4. Liu, D.; Sun, H.; Ma, H., Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists Against Pathogenic Ilyonectria. Frontiers in microbiology 2019, 10, 1350.
5. Cui, Z., Zhao, Y. , Mao, Y. , Shi, T. , Lu, L. , Ma, H. , Wang, Z. and Chen, T. , In vitro biosynthesis of optically pure d‐(?)‐acetoin from meso‐2,3‐butanediol using 2,3‐butanediol dehydrogenase and NADH oxidase. J. Chem. Technol. Biotechnol. 2019, 94, 8.
6. Zheng, Y.; Yuan, Q.; Luo, H.; Yang, X.; Ma, H., Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. Bioengineered 2018, 9 (1), 209-213.
7. Zhang, S.; Liu, D.; Mao, Z.; Mao, Y.; Ma, H.; Chen, T.; Zhao, X.; Wang, Z., Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnology letters 2018, 40 (5), 819-827.
8. Liu, D.; Mao, Z.; Guo, J.; Wei, L.; Ma, H.; Tang, Y.; Chen, T.; Wang, Z.; Zhao, X., Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS synthetic biology 2018, 7 (7), 1785-1797.
9. Li, F.; Xie, W.; Yuan, Q.; Luo, H.; Li, P.; Chen, T.; Zhao, X.; Wang, Z.; Ma, H., Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express 2018, 8 (1), 106.
10. Zheng, Y.; Yuan, Q.; Yang, X.; Ma, H., Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme and microbial technology 2017, 106, 60-66.
11. Yuan, Q.; Huang, T.; Li, P.; Hao, T.; Li, F.; Ma, H.; Wang, Z.; Zhao, X.; Chen, T.; Goryanin, I., Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PloS one 2017, 12 (1), e0169437.
12. Zhou, W.; You, C.; Ma, H.; Ma, Y.; Zhang, Y. H., One-Pot Biosynthesis of High-Concentration alpha-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes. Journal of agricultural and food chemistry 2016, 64 (8), 1777-83.
13. Yang, X.; Yuan, Q.; Zheng, Y.; Ma, H.; Chen, T.; Zhao, X., An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnology letters 2016, 38 (8), 1359-65.
14. Meng, Q.; Zhang, Y.; Ju, X.; Ma, C.; Ma, H.; Chen, J.; Zheng, P.; Sun, J.; Zhu, J.; Ma, Y.; Zhao, X.; Chen, T., Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of biotechnology 2016, 226, 8-13.
15. Li, P.; Ma, H.; Zhao, X.; Chen, T., [Predicting genetic modification targets based on metabolic network analysis--a review]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2016, 32 (1), 1-13.
16. Fu, J.; Huo, G.; Feng, L.; Mao, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for biofuels 2016, 9, 90.
17. Zhang, Y.; Meng, Q.; Ma, H.; Liu, Y.; Cao, G.; Zhang, X.; Zheng, P.; Sun, J.; Zhang, D.; Jiang, W.; Ma, Y., Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microbial cell factories 2015, 14, 86.
18. Lin, Z.; Zhang, Y.; Yuan, Q.; Liu, Q.; Li, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microbial cell factories 2015, 14, 185.
19. Kiseleva, L.; Garushyants, S. K.; Ma, H.; Simpson, D. J.; Fedorovich, V.; Cohen, M. F.; Goryanin, I., Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters. Journal of integrative bioinformatics 2015, 12 (3), 273.
20. Zhang, Y.; Lin, Z.; Liu, Q.; Li, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X., Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microbial cell factories 2014, 13, 172.
21. Yang, X.; Zhang, Y.; Zheng, Y.; Ma, H., [Development and analysis of a kinetic model for Escherichia coli threonine biosynthesis]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2014, 30 (1), 18-29.
22. Tang, B.; Hao, T.; Yuan, Q.; Chen, T.; Ma, H., [Genome minimization method based on metabolic network analysis and its application to Escherichia coli]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2013, 29 (8), 1173-84.
23. Sharp, G. C.; Ma, H.; Saunders, P. T.; Norman, J. E., A computational model of lipopolysaccharide-induced nuclear factor kappa B activation: a key signalling pathway in infection-induced preterm labour. PloS one 2013, 8 (7), e70180.
24. Liu, Z.; Ma, H.; Goryanin, I., A semi-automated genome annotation comparison and integration scheme. BMC bioinformatics 2013, 14, 172.
25. Hao, T.; Han, B.; Ma, H.; Fu, J.; Wang, H.; Wang, Z.; Tang, B.; Chen, T.; Zhao, X., In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Molecular bioSystems 2013, 9 (8), 2034-44.
26. Hao, T.; Ma, H.; Zhao, X., [Progress in automatic reconstruction and analysis tools of genome-scale metabolic network]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2012, 28 (6), 661-70.
27. Boogerd, F. C.; Ma, H.; Bruggeman, F. J.; van Heeswijk, W. C.; Garcia-Contreras, R.; Molenaar, D.; Krab, K.; Westerhoff, H. V., AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4(+)/NH3. FEBS letters 2011, 585 (1), 23-8.
28. Wang, H.; Ma, H.; Zhao, X., [Progress in genome-scale metabolic network: a review]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2010, 26 (10), 1340-8.
29. Ma, H.; Boogerd, F. C.; Goryanin, I., Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. Journal of biotechnology 2009, 144 (3), 175-83.
30. Ma, H.; Goryanin, I., Human metabolic network reconstruction and its impact on drug discovery and development. Drug discovery today 2008, 13 (9-10), 402-8.
31. Wang, Q.; Yang, Y.; Ma, H.; Zhao, X., Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics (Oxford, England) 2007, 23 (9), 1049-52.
32. Ma, H.; Sorokin, A.; Mazein, A.; Selkov, A.; Selkov, E.; Demin, O.; Goryanin, I., The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular systems biology 2007, 3, 135.