Professor
Xue Chaoyou

Title:Xue Chaoyou

E-mail:xuechy@tib.cas.cn

Research Interest

We mainly use Total Internal Reflection Fluorescence Microscopy (TIRFM) for single molecule fluorescence imaging, such as smFRET and DNA curtains. We aim to use single molecule fluorescence imaging techniques to understand the molecular mechanisms of CRISPR-Cas system and improve CRISPR enzymes’ activities and specifies, to decipher how double-strand breaks (DSBs) are repaired through homologous recombination, to elucidate the defense mechanisms against foreign DNA and DSBs repair mechanisms in non-model organisms and establish gene manipulation systems in non-model organisms, to develop novel tools for whole-genome synthesis.

Education & Professional Experience

2021.01-current                    Investigator,                TIB, Chinese Academy of Sciences, China            

2017.12-2020.12       Postdoctoral Researcher        Columbia University, USA

2013.08-2017.12                      Ph.D.                       Iowa State University, USA

2010.09-2013.07                      M.S.                          Tianjin University,  China 

2006.09-2010.07                      B.S.                      Northwest A&F University, China  

Honors and Awards

2015     Outstanding Thesis Award (M.S.) of Tianjin

2016     The Best Graduate Student Poster Award of the 11th Annual Stupka Symposium

2017     Iowa State University Research Excellent Award

2020     Journal of Biological Chemistry Early Career Reviewer

Selected Publications

1. Salunkhe S*, Daley J*, Xue C*, Tomimatsu N*, Kaur H*, Raina V, Jasper A, Rogers C, Li W, Zhou S, Mojidra R, Kwon Y, Dinh H, Mukherjee, Habib A, Hromas R, Mazin A, Wasmuth E, Olsen S, Libich D, Zhou D, Zhao W, Greene E C#, Burma S#, Sung P#. Promotion of DNA end resection by the BRCA1-BARD1 tumor suppressor in homologous recombination. (submitted)

2. Li M*, Cai Z*, Song S*, Ju H, Lu W, Rao S#, Zhang C#, Xue C#. EcCas6e-based antisense crRNA for gene repression and RNA editing. (submitted)

3. Yang C*, Zhou Z*, Sun X, Ju H, Yue X, Rao S#, Xue C#. PAMless SpRY exhibits a preference for the seed region for efficient targeting. (submitted)

4. Yao Y*, Zhou Z*, Wang X, Liu Z, Zhai Y, Chi X, Du J, Zhao Z, Xue C#, Rao S#. SpRY-mediated CRISPR screening facilitates functional dissection of non-coding sequences at single-base resolution. (submitted)

5. Xue C*, Salunkhe S*, Tomimatsu N, Kawale A, Kwon Y, Burma S, Sung P, Greene E C. Bloom helicase mediates formation of large single-strand DNA loops during DNA end processing. Nature Commun. 2022

6. Xue C, Greene E C. Factors favoring HDR Choice in Response to CRISPR/Cas9 induced-DSB. Trends in Genetics. 2021(影响因子: 10.6)

7. Xue C*, Molnarvova L*, Steinfeld J, Zhao W, Ma C, Spirek M, Kaniecki K, Kwon Y, Beláñ O, Boulton S, Sung P, Greene E C, Krejci L. Single-Molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Res. 2021. 1(49):285-305.(影响因子: 11.5)

8. Meir A*, Kong M*, Xue C, Greene E C. DNA curtains shed Light on Complex Molecular Systems During Homologous Recombination. J. Vis. Exp, e61320, 2020. (in press).(影响因子: 1.1)

9. Kong M*, Cutts E*, Pan D, Beuron F, Kaliyappan T, Xue C, Morries E, Musacchio A, Vannini A, Greene E C. Human condensing I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol Cell. 2020, 79:1-16.(影响因子: 15.6)

10. Jia N*, Unciuleac M*, Xue C, Greene E C, Patel D, Shuman S. Structures and single-molecule kinetics analysis of the motor-nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. PNAS. 2019. 116 (49): 24507-24516.(影响因子: 9.6)

11. Xue C, Daley J, Xue X, Steinfeld J, Kwon Y, Sung P, Greene E C. Single-Molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res. 2019, 1.1035.(影响因子: 11.5)

12. Yan Z, Xue C, Kumar S, Crickard J B, Yu Yang, Wang W, Pham N, Sung P, Greene E C, Ira G. Rad52 regulates resection at DNA double strand break ends. Mol Cell. 2019, 1:1-13.(影响因子: 15.6)

13. Crickard J B, Xue C, Wang W, Kwon Y, Sung P, Greene E C. The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res, 2019, 47(9): 4694-4706.(影响因子: 11.5)

14. Xue C, Wang W, Crickard J B, Moevus C J, Kwon Y, Sung P, Greene E C. Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. PNAS, 2019, 116 (23), 6091-6100.(影响因子: 9.6)

15. Xue C, Greene E C. New roles for RAD52 in DNA repair. Cell Res, 2018, 28:1127-1128.(影响因子: 20.5)

16. Phan PT, Schelling M, Xue C, Sashital D G. Fluorescence-based methods for measuring target interference by CRISPR-Cas systems. Methods Enzymol, 2019, 616, 61-85.(影响因子: 1.9)

17. Xue C, Sashital D G. Mechanisms of Type IE and IF CRISPR-Cas Systems in Enterobacteriaceae, EcoSal Plus, 2019, 8(2).

18. Xue C, Zhu Y, Hawk B, Yin L, Shin Y K, Sashital D G. Real-time observation of target search by the CRISPR surveillance complex Cascade. Cell reports, 2017, 21(13), 3717-3727.(影响因子: 8.1)

19. Xue C, Whitis N, Sashital D G. Conformational control of Cascade interference and priming activities in CRISPR immunity. Mol Cell, 2016, 64(4), 826-834.(影响因子: 15.6)

20. Xue C, Seetharam A S, Musharova O, Severinov K, Brouns S J, Severin A J, & Sashital D G. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res, 2015, 43(22): 10831-10847.(影响因子: 11.5)

21. Xue C, Duan Y, Zhao F, & Lu W. Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem Eng J, 2013, 72: 90-95. (影响因子: 3.5)

22. Xue C*, Zhang X*, Yu Z, Zhao F, Wang M, & Lu W. Up-regulated spinosad pathway coupling with the increased concentration of acetyl-CoA and malonyl-CoA contributed to the increase of spinosad in the presence of exogenous fatty acid. Biochem Eng J, 2013, 81: 47-53.(影响因子: 3.5)

23. Zhang X, Xue C, Zhao F, Li D, Yin J, Zhang C, Caiyin Q, Lu W. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in S. spinosa. Microb Cell Fact, 2014,13:98.(影响因子: 4.2)

24. Zhao F, Xue C, Wang M, Wang X, Lu W. A comparative metabolomics analysis of S. spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield. Biosci Biotech Biochem, 2013, 77(8): 1661-1668. (影响因子: 1.5) 

25. Zhu L, Yang X, Xue C, Chen Y, Qu L, & Lu W. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol, 2012, 117: 208-213. (影响因子: 7.5)

26. Yang X, Zhu L, Xue C, Chen Y, Qu L, & Lu W. Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzyme Microb Technol, 2012, 51(6): 348-353. (影响因子: 3.4)