Protein engineering and biocatalysis for green bio-manufacturing, including industrial enzyme catalysts, bioconversion for C1 compounds, enzymatic recycling of plastics, etc.
Education
2009-2010 Ph.D. Institute of Biotechnology, RWTH Aachen University, Germany
2007-2009 Ph.D. study, Jacobs University Bremen, Germany
2005-2007 M.S. Department of Bioengineering, Jiangnan University, China
2001-2004 B.S. Department of Bioengineering, Jiangnan University, China
Professional Experience
2016-now Principle Investigator, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
2011-2016 Subgroup leader, Institute of Biotechnology, RWTH Aachen University, Germany
1. Nie Z. #, Liu P.#, Yew M., Shen J., Sun J., Schwaneberg U., Zheng P. , Zhu L. Channel Engineering of a Glutamate Exporter, ChemBioChem, 2024, e202400540.
2. Zhang N., Yang J., Li Z., Haider J., Zhou Y., Ji Y., Schwaneberg U., Zhu L. Influences of the Carbohydrate-Binding Module on a Fungal StarchActive Lytic Polysaccharide Monooxygenase. Journal of Agricultural and Food Chemistry.2023,71(47),18405-18413.
3. Shi L., Zhu L.Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes.ChemBioChem, 2023,25(2),e202300578.
4. Shi L., Liu P., Tan Z., Zhao W., Gao J., Gu Q., Ma H., Liu H., Zhu L. Complete Depolymerization of PET Waste by an Evolved PET Hydrolase from Directed Evolution. Angewandte Chemie International Edition,2023,e202218390.
5. Su X., Yang J., Yuan H., Liu C., Tu R., Liu P., Wang Q., Zhu L. Directed evolution of laccase for improved thermal stability facilitated by droplet-based microfluidic screening system. Journal of Agricultural and Food Chemistry.2022,70, 42, 13700-13708.
6. Ren P., Tan Z., Zhou Y., Tang H., Xu P., Liu H.*, Zhu L*. Biocatalytic CO2 fixation initiates selective oxidative cracking of 1-naphthol under ambient conditions. Green Chemistry,2022,24,4766-4771.
7. Li T., Tan Z., Tang Z., Liu P., Liu H.*, Zhu L.*, Ma Y. One-pot chemoenzymatic synthesis of glycolic acid from formaldehyde. Green Chemistry,2022, 24, 5064 -5069.
8. Ma Y., Li T., Tang Z., Ma L., Liu H., Zhu L. Chemoenzymatic conversion of glycerol to lactic acid and glycolic acid. Bioresources and Bioprocessing,2022,9:75.
9. Cai T.#, Sun H.#, Qiao J.#, Zhu L.#, Zhang F., Zhang J., Tang Z., Wei X., Yang J., Yuan Q., Wang W., Yang X., Chu H., Wang Q., You C., Ma H., Sun Y., Li Y., Li C., Jiang H., Wang Q., Ma Y. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science,2021,373,1523-1527.
10. Guo W., Yang J., Huang T., Liu D., Liu Q., Li J., Sun W., Wang X., Zhu L.*, Tian* C. Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. Biotechnology for Biofuels,2021, 14:225.
11. Nie Z. #, Liu P.#, Wang Y., Guo X., Tan, Z., Shen J., Tang Z., Sun J., Zheng P. *, Zhu L. * Directed evolution and rational design of mechanosensitive channel MscCG2 for improved glutamate excretion efficiency. Journal of Agricultural and Food Chemistry.2021,69(51),15660-15669.
12. Yang J., Tu R., Yuan H., Wang Q.*, Zhu L.* Recent advances in droplet microfluidics for enzyme and cell factory engineering. Critical Reviews in Biotechnology,2021,41,7,1023-1045.
13. Shi L., Liu H., Gao S., Weng Y.*, Zhu L.*. Enhanced extracellular production of IsPETase in Escherichia coli via engineering of the pelB signal peptide. Journal of Agricultural and Food Chemistry.2021,69(7),2245-2252 (ACS Editors’ Choice).
14. Li T., Tang Z., Wei H., Tan Z., Liu P., Li J., Zheng Y., Lin J., Liu W., Jiang H., Liu H.*, Zhu L.*, Ma Y. Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemo-rearrangement without the isolation of intermediate. Green Chemistry, 2020, 22, 6809-6814.
15. Cheng C., Haider J., Liu P., Yang J., Tan Z., Huang T., Lin J., Jiang M.,* Liu H.*, Zhu L.*. Engineered LPMO significantly boosting cellulase-catalyzed depolymerization of cellulose. Journal of Agricultural and Food Chemistry. 2020, 68(51), 15257-15266.
16. Cheng F., Yang J., Schwaneberg U., Zhu L.*. Rational surface engineering of an arginine deiminase (an antitumor enzyme) for increased PEGylation efficiency. Biotechnology and Bioengineering, 2019, 116(9), 2156-2166.
17. Cheng F., Yang J., Bocola M., Schwaneberg U., Zhu L.*. Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme).Biochemical and Biophysical Research Communication. 2018, 499(2), 233-238.
18. Frauenkron-Machedjou V. J., Fulton A., Zhao J., Weber L., Jaege K. E. r, Schwaneberg U., and Zhu L.*. Exploring the full natural diversity of single amino acid exchange reveals that 40-60% of BSLA positions improve organic solvents resistance. Bioresource and Bioprocessing, 2018, 5:2.
19. Markel U.#, Zhu L.#, Frauenkron-Machedjou V. Zhao J., J., Bocola M., Davari M. D., Jaeger K.E., Schwaneberg U. Are Directed evolution approaches efficient in exploring nature’s potential to stabilize a lipase in organic cosolvents? Catalysts, 2017, 7(5), 142.
20. Charan H., Glebe U., Anand D., Kinzel J., Zhu L., Bocola M., Garakani T. M., Schwaneberg U., Boeker A. Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates. Soft Matter. 2017, 13(15):2866-2875.
21. Charan H., Kinzel J., Glebe U., Anand D., Garakani T. M., Zhu L., Bocola M., Schwaneberg U., Boeker A. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials. 2016,107:115-23.
22. Cheng F.#, Zhu L.#, Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chemical Communication, 2015,51(48):9760-9772.
23. Cheng F., Kardashliev T., Pitzler C., Shehzad A, Lue H., Bernhagen J, Zhu L.*, Schwaneberg U*. A competitive flow cytometry screening system for directed evolution of therapeutic enzyme. ACS Synthetic Biology, 2015, 4 (7), 768-775.
24. Zhu L., Cheng F., Piatkowski V. and Schwaneberg U.. Protein engineering of the antitumor enzyme PpADI for improved thermal resistance. ChemBioChem, 2014, 24, 15(2), 276-283.
25. Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVF(tev): effect of spacer length. Sauer D. F., Bocola M., Broglia C., Arlt M., Zhu L., Brocker M., Schwaneberg U., Okuda J. Chemistry-An Asian Journal. 2015,10(1):177-82.
26. Cheng F., Zhu L.*, Lue H., Bernhagen J, Schwaneberg U*. Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied Microbiology and Biotechnology, 2014, 99(3):1237-1247.
27. Philippart F., Arlt M., Gotzen S., Tenne S. J., Bocola M., Chen H. H., Zhu L., Schwaneberg U. and Okuda J. A hybrid ring-opening metathesis polymerization catalyst based on engineered ß-barrel protein FhuA. Chemistry an Euopean Journal, 2013, 19(41), 13865-13871.
28. Liu H., Zhu L., Bocola M., Chen N., Spiess A. C. and Schwaneberg U. Directed laccase evolution for improved ionic liquid resistance. Green Chemistry, 2013, 15, 1348-1355.
29. Rijn P., Tutus M., Kathrein C., Zhu L., Wessling M., Schwaneberg U., and Böker A.. Challenges and Advances in the Field of Self-Assembled Membranes, Chemical Society Reviews, 2013, 42(16):6578-6592.
30. Zhu L., Rajni V., Roccatano D., Ni Y., Sun Z., and Schwaneberg U.. A potential antitumor drug (arginine deiminase) reengineered for efficient operation under physiological conditions. ChemBioChem, 2010, 11(16):2294-301.
31. Zhu L., Tee K., Roccatano D., Sonmez B, Ni Y., Sun Z., and Schwaneberg U.. Directed evolution of an antitumor drug (arginine deiminase PpADI) for increased activity at physiological pH. ChemBioChem. 2010, 11, 691-697.